Implementing a NeuroGym®
Active Restorative Program in Eldercare

Hand therapy is a vital area of physical and occupational therapy following central and/or peripheral neurological damage. In fact, with the increased incidence of stroke survivors worldwide, there is growing pressure to provide effective, evidence-based rehabilitation. As a result, optimizing recovery of hand function has been the focus of considerable research in recent years.

Therapeutic practices in rehabilitation have begun to be significantly influenced by research in neuroplasticity, motor control and motor learning. For example, there are now robust findings indicating that functionally relevant adaptive changes can occur in the human brain during recovery from a stroke or other brain insult. Clinical therapists are, therefore, eager to consider new methods of training and therapeutic techniques based on the neurobiological principles of neuroplasticity. As a result, studies of such techniques as Constraint Induced Movement Therapy or Virtual Reality training continue to be investigated as alternatives to conventional physical therapy treatment. For example, the potential of biofeedback practice in a virtual environment was studied for the rehabilitation of the hand and arm.

Another technique that is based on motor learning principles is the use of biofeedback interfaced with real-time computer games. The NeuroGym® Trainer is a multi-sensor device with physiotherapist-designed software. It uses information from sensors (e.g., EMG, pressure, tilt, proximity etc.) in a number of therapist-set paradigms to drive motivational computer games such as intercepting a ball with a paddle (Pong) or steering a car down a track. This obviously creates an environment in which patients can sustain the motivation to practice for extended periods of time.

Recently, two new sensors for hand training have been added to the NeuroGym® Trainer to further increase the efficacy of rehabilitation. The first, a glove-like sensor, allows the clinician to program precise finger movements. The second is a pinch/pressure detector. Both enable the patient to play speed-sensitive computer games with the information provided by the sensors.

The hand training sensors add to the NeuroGym® Trainer’s already large list of applications including facial training, balance and coordination, and incontinence training. The two hand-specific sensors, one detecting light pressure and one detecting finger joint movement, could be combined with EMG sensors to comprise a comprehensive and intensive hand training paradigm. The information from the finger movement, whether flexion-extension or press-release motion, feeds into the software of the NeuroGym® Trainer. This multisensor biofeedback device can then be set to intensively train advantageous motions while simultaneously discouraging movements that are not advantageous to the overall synergy. For example, a therapist may set up a video game where two game pieces are controlled by extension of digits two and four. Digit three may then be assigned a desired extension range while the thumb may be assigned a desired pressure range to maintain thumb extension. If either digit deviates from the desired range, the user would lose control over the game piece.

An experienced hand therapist could easily design many different training paradigms, in each case allowing for intensive, speed-sensitive training of the desired finger/hand synergy. In line with recent evidence of brain plasticity, such training should optimize the re-learning of coordinated movement and improve the active range in the trained extremities.

A combination of sensors can also be used to create powerful multi-faceted upper extremity training. For example, patients with limited reaching and grasping ability could effectively train such movements by combining the information from a proximity sensor (reaching) with that of a joint goniometer set to encourage wrist extension. Pinch or finger joint sensors could then be added to create the desired combination of arm and hand training.

The goals of hand therapy may include improving finger dexterity, increasing hand grip strength, improving arm and hand steadiness or the ability to perform aimed reaching. Whether deficits in these abilities are the result of a brain insult or due to central or peripheral nerve or tendon damage, the NeuroGym® Trainer gives the therapist the necessary tools to provide intensive, motivational and varied practice.
relevant adaptive changes can occur in the human brain. These findings indicate that functionally, motor control and motor learning can be improved by providing effective, evidence-based rehabilitation. As a result, optimizing recovery of hand function has been a focus of research. For stroke survivors worldwide, there is growing pressure to develop new treatment methods. With the increased incidence of stroke and other central or peripheral nervous system damage, new rehabilitation techniques are being developed to maximize recovery.

Hand therapy is a vital area of physical and occupational therapy. Practical methods of training and therapeutic techniques based on the principles of brain plasticity are being studied. For example, Constraint Induced Movement Therapy (CIMT) has been shown to be effective in improving motor function in individuals post-stroke. The first, a glove-like sensor, biofeedback device can then be set to intensively train disadvantageous motions while simultaneously discouraging use of advantageous motions. The therapist can set the parameters, which may include light pressure and one detecting finger joint movement, to enable the patient to practice movements that are not advantageous to the overall recovery process.

The information from the finger movement, whether flexion-extension or press-release motion, feeds into the software. It uses information from sensors (e.g., EMG, multi-sensor device with physiotherapist-designed principles) to enhance the effectiveness of rehabilitation. The first, a glove-like sensor, can be set to intensively train disadvantageous motions while simultaneously discouraging use of advantageous motions. The therapist can set the parameters, which may include light pressure and one detecting finger joint movement, to enable the patient to practice movements that are not advantageous to the overall recovery process.

The second, a car down a track, creates an environment in which patients can sustain the motivation to practice extended periods of time. The NeuroGym® Trainer is a powerful multi-faceted upper extremity training system that is capable of interfacing with personal computer keyboards, joysticks, or gamepads to control virtual environments for game play. The Trainer’s already large list of applications includes facial exercise system for hand rehabilitation post-stroke. 2nd International Workshop on Virtual Rehabilitation; September 2003; Piscataway, NJ. The Trainer software can be used in conjunction with the trainer to provide real-time computer games. The NeuroGym® Trainer is a comprehensive and intensive hand training paradigm. An experienced hand therapist could easily design many different training paradigms, in each case allowing for re-learning of coordinated movement and improving the brain plasticity such training should optimize the synergy. For example, a therapist may set up a video game piece. Depending on the intended range, the user would lose control over the thumb extension. If either digit deviates from the extension of digits two and four, digit three may then be added to create the desired combination of arm and hand steadiness or the ability to perform aimed dexterity, increasing hand grip strength, improving arm active range in the trained extremities.

An experienced hand therapist could easily design many different training paradigms, in each case allowing for re-learning of coordinated movement and improving the brain plasticity such training should optimize the synergy. For example, a therapist may set up a video game piece. Depending on the intended range, the user would lose control over the thumb extension. If either digit deviates from the extension of digits two and four, digit three may then be added to create the desired combination of arm and hand steadiness or the ability to perform aimed dexterity, increasing hand grip strength, improving arm active range in the trained extremities.

Reference: